Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords
نویسندگان
چکیده
OBJECTIVE Correlation of diffusion tensor imaging (DTI) with histochemical staining for demyelination and axonal damage in multiple sclerosis (MS) ex vivo human cervical spinal cords. BACKGROUND In MS, demyelination, axonal degeneration, and inflammation contribute to disease pathogenesis to variable degrees. Based upon in vivo animal studies with acute injury and histopathologic correlation, we hypothesized that DTI can differentiate between axonal and myelin pathologies within humans. METHODS DTI was performed at 4.7 T on 9 MS and 5 normal control fixed cervical spinal cord blocks following autopsy. Sections were then stained for Luxol fast blue (LFB), Bielschowsky silver, and hematoxylin and eosin (H&E). Regions of interest (ROIs) were graded semi-quantitatively as normal myelination, mild (<50%) demyelination, or moderate-severe (>50%) demyelination. Corresponding axonal counts were manually determined on Bielschowsky silver. ROIs were mapped to co-registered DTI parameter slices. DTI parameters evaluated included standard quantitative assessments of apparent diffusion coefficient (ADC), relative anisotropy (RA), axial diffusivity and radial diffusivity. Statistical correlations were made between histochemical gradings and DTI parameters using linear mixed models. RESULTS Within ROIs in MS subjects, increased radial diffusivity distinguished worsening severities of demyelination. Relative anisotropy was decreased in the setting of moderate-severe demyelination compared to normal areas and areas of mild demyelination. Radial diffusivity, ADC, and RA became increasingly altered within quartiles of worsening axonal counts. Axial diffusivity did not correlate with axonal density (p=0.091). CONCLUSIONS Increased radial diffusivity can serve as a surrogate for demyelination. However, radial diffusivity was also altered with axon injury, suggesting that this measure is not pathologically specific within chronic human MS tissue. We propose that radial diffusivity can serve as a marker of overall tissue integrity within chronic MS lesions. This study provides pathologic foundation for on-going in vivo DTI studies in MS.
منابع مشابه
Using diffusion tensor imaging and immunofluorescent assay to evaluate the pathology of multiple sclerosis.
PURPOSE To determine the ability of the principal diffusion tensor imaging (DTI) indices to predict the underlying histopathology evaluated with immunofluorescent assay (IFA). MATERIALS AND METHODS Conventional T2 and 3D multishot-diffusion weighted echoplanar imaging (3D ms-DWEPI) was performed on a fixed, ex vivo human cervical spinal cord (CSC) from a patient with a history of multiple scl...
متن کاملDiffusion tensor magnetic resonance imaging may show abnormalities in the normal-appearing cervical spinal cord from patients with multiple sclerosis.
OBJECTIVE This study aims to evaluate "in vivo" the integrity of the normal-appearing spinal cord (NASC) in patients with multiple sclerosis (MS) compared to controls, using diffusion tensor MR imaging. METHODS We studied 32 patients with MS and 17 without any neurologic disorder. Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) were calcul...
متن کاملAxial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: a quantitative pixelwise analysis.
The dissociation between magnetic resonance imaging (MRI) and permanent disability in multiple sclerosis (MS), termed the clinicoradiological paradox, can primarily be attributed to the lack of specificity of conventional, relaxivity-based MRI measurements in detecting axonal damage, the primary pathological correlate of long-term impairment in MS. Diffusion tensor imaging (DTI) has shown promi...
متن کاملIncreased diffusivity in acute multiple sclerosis lesions predicts risk of black hole.
OBJECTIVE Diffusion tensor imaging (DTI) quantifies Brownian motion of water within tissue. Inflammation leads to tissue injury, resulting in increased diffusivity and decreased directionality. We hypothesize that DTI can quantify the damage within acute multiple sclerosis (MS) white matter lesions to predict gadolinium (Gd)-enhancing lesions that will persist 12 months later as T1 hypointensit...
متن کاملSegmented corpus callosum diffusivity correlates with the Expanded Disability Status Scale score in the early stages of relapsing-remitting multiple sclerosis
OBJECTIVE The aim of this study was to characterize the microscopic damage to the corpus callosum in relapsing-remitting multiple sclerosis (RRMS) with diffusion tensor imaging and to investigate the correlation of this damage with disability. The diffusion tensor imaging parameters of fractional anisotropy and mean diffusivity provide information about the integrity of cell membranes, offering...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 55 4 شماره
صفحات -
تاریخ انتشار 2011